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Abstract : Structure-enantioselectivity relationships were established for tbe reduction of a set of 41 carbonyf 
compounds with baker’s yeast. The obtained neural network model, allows the classification of the 41 alcohols 
(obtained by baker’s yeast reduction) as R or S with 85% of success. The implicit rules detected by the neural network 
were given. 

Baker’s yeast (BY) reduction of carbonyl compounds (e.g. fi-keto-esters) is one of the most extensively 

studied microbial transformation to obtain chiral compounds or blocksl. It was shown that several parametem 

govern enantio and regioselectivity of the 3Y reduction, among them structural env~~ent of the carbonyl 

group seemed to be the most important one. Prelog rule2 is generally applied in pmdicting the conflgumtion of 

the alcohol formed. However, it is empirical and has often proved to be not useful in the case of Bketo esters 

reduction3. Sih4 has shown that the yeast produces several enxymes which are able to distinguish between small 

and large groups, adjacent to the carbonyl; thus hydrogen is delivered from both the re- and si- faces , 

producing both enantiomers at different rates. The difference in bulk between the two groups should then 

regulate the kinetics of the reaction leading to selective reduction. 

Enantioselectivity of carbonyl reduction depends on intrinsic parameters related to its structural 

environment (Rl and Rz), and extrinsic parameters (e.g reaction conditions such as time, temperature, solvent 

nature and amount, subs&at, baker’s yeast and glucose concentrations). 

In #is preli~n~ work, we attempt to qu~tify the effect of st~ctur~ parameters on the 

~~tia~l~~~ of the reduction of the carbonyl group with baker’s yeast. We try to establish a mc&l for the 

p&&ion of the enantioselectivity for a sample of miscellaneous carbonyl compounds using the neural network 

(NN) approach. We also evaluate the contribution of each group to the enantioselectivity and compare the model 

to that obtained using multidimensional statistical analysis. 

Material and Methods: A set of 41 carbonyl compounds is taken from different iiterature sources (table 1). 

All the baker’s yeast reductions are carried out in relatively sMlar conditions (e.g. amounts of baker’s yeast, 

glucose, substrat, reaction time). The studied compounds have a common C=O group, then their coding was 

simplified. Each molecule was described by a set of variables related to radicals R1 and R2. This procedure 

allows us to evaluate the incidence of each radical on the enantioselectivlty of the reduction’s product. The 
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group having the priority according to Cahn-Ingold-Prclog rules is considered as R2 in order to obtain a 

homogeneous description of the molecules. 

Tabie 1: Chemical stmctures of the compouads studied 

1 C?i3--cckCH2<@C&83 (93.sa)s 2 

3 CICH2-CO-CH2-CO2CH3 (77.!+* 4 

5 Clc=H2-co-cH2-C@C3a7 (6@* 6 

7 ClCH2-CO-CH2-CO$5Ht t (!@ 8 

9 ClCH2-CO-CH2-C02C7Hl5 (l$ 10 

11 CH3-CO-CH2-CS-SC2H5 (Qs)6 12 

13 CH3-CO-CH(CH3)-CS-SC3 (98$ 14 

15 CH3-CO-CH(CH3)-CO-SC2H5 (98$ 16 

17 N3CH2-CO-CH2-OCOC6H5 (89)7 I8 

19 C2H5-co-(C=2)3-N02 (se,8 20 

21 BrCH2-CO-CH2-C02C2H5 (QQ)g** 22 

23 C4H9-C~CH2-COOH (O)lO 24 

25 G#$H20(CH2)zCOCB2CCk$sHl t(Q8)12 26 

27 CB3CO-CH2OH (4)13 28 

29 C&-CO-CH2OH (0) 1 3 30 

31 C6B5CH2O-CH2-CO-CH3 (95) l4 32 

33 C2H5-CO-C02C2H5 (87.5)15 34 

35 C6H5CO-CONH2 (0) 11 36 

37 CH3-CO-CHO* (98)17 38 

39 CH30-CH2-CO-CHO* (97s)t8 40 

41 CH3-CO-CHz-SCH3 (97.5)’ 

CB3-co-CB2-c~CB3 (26)5 

ClCH2-CO-CH2-CO2C2H5 (7$** 

ClCH2-CO-CH2-C02C&g*: (60) 5 

ClCH2-CO-CH2-C02C6Hl3 (2Z# 

CKH~-CO-CH~-CO~CIJH~~ (1)5 

CH3-CO-CH2-CS-SCH3 (Q8)6 

CH3-CO-CH2-CO-SC2H5 (98$ 

N$ZH2-CO-CH2-OCOCH3 (87.5)’ 

N3~2~~2-~(~3)3 (95)’ 

C2H5CO-C3H7 (83.@ 

N3CH2-CO-CH2-CQC~H~7 ( l)g+* 

C$I+CO-CH2-C02C2H5 (1OO)t ’ 

C6H5CB2O(CB2kZC~2CO2C6Bl3 (Q8)12 

C2H5-CO-CB2OH (O)l 3 

C6H5-CO-CH2-OCOCH3 (97)14 

CH~-CO-C~$I~HJ (95.5) 1 5 

c$Ii5-Co-COp#3 (O)f5 

L-P~~~~~co-co~cH~ (4)16 

C3H7-CO-CHO* (98) * ’ 

CH3-CO-CH2-So2cgHg (97.5$ 

a) % S ; * attiyde protezted by HS(CH2)3SH, ** compounds not cometty classified using our neural network model. 

We consider molar refraction (MR)lQ that accounts for both electrouic and size of the radicals, and p (Wiener’s 

polarity index)20 in order to take into account the shape. Enantiosel&ivity index (E : %S enantiomer) is coded 

using a binary variable (positive if the reduction lead to S mainly and negative elsewere). E is correlated to the 

descriptors using Linear Discriminant Ansly&* and the Neural Network approach 22-x. 

Results and Discussions 

Linear blent Analysis The final data set (41 x 5) is subjected to LDA in order to establish a 

linear model between the e~ti~l~ti~~ index E and the descrlptom used. The most si~c~t model is : 
E cth_, = 0.018 -2) - 0.404 (n = 41, r = 0.492, s = 0.415) (I) 

The coefficient associated with MR(R2) is statistkally significant @cl%). However, accouling to the ~Wi~ti~ 

criteria, the equation is not significant. It leads to 50% of good classification of the compounds pro-S, and 

92.3% of those pro-R. We tlrink that the good prediction ability of pro-R is only due to the composition of our 

sample. The average prediction ability is 63%. Then LDA is not appropriate for modelliug enantioselectivity of 
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the reduction for the studied sample. This is due to the non-linearity of the enantioselectivity as a function of the 

parameters describing Rt and R2 groups. Thus, we adopte the neural network approach. 

Neural Network: Data is subjected as a training set to the NN (configuration 441, using a sigmoid as 

a transfer function with a = 1, b = 0.2 and c = 0.5) in order to evaluate the weights of the connections between 

all the neurons (Table 2). After several attempts, input values of the en~ti~l~tivi~ function were taken as 

0.2 when the reaction lead to R enantiomer mainly and 0.8 elsewere. 

Table 2 : Weight matrix for the connections between neurons 

I31 II2 II3 II4 II->I4 : input neurons representing descriptors. 

11 -8.48 -6.12 -7.84 0.21 H I->H4 : hidden neurons. 0 : output neuron. 

I2 4.09 -3.28 1.00 4.00 Cost : 1.89, CMR(RI) = 43% 

I3 15.94 5.83 9.19 1.56 CMR(~) = 3 1%. Cpl = 7% 

I4 27.41 12.31 22.29 1.9 Cp2 = 1896, Number of cycles is 2050. 

0 9.62 -1.75 -2.37 -2.14 Cx(m): contribution of a descriptor nlated to Ri. 

After a training phase, the classification abiity of the NN is tested by calculating &alc. for each molecule. 

Thirty five (85.4%) molecules are correctly classified by the NN (82.1% and 92.3% for pro-S and pro-R 

respectively). Classification ability of the network is higher than that of IDA. However its use, as a tool in the 

enantioselectivity prediction, is not easy due to the calculations associated with the prediction procedure. In fact, 

we try to explicit the rules found by the NN model and present them more simply. We focuse our investigation 

by considering molar refraction of both Rt and R2 only, due to the contribution that these parameters account 

for (43 and 31% for MRl and MR2 respectively). Curve representing Ecalc. = f(MR(&) @lg.) reveals the 

behaviour of the two descriptors. 

The cloud of points at the top of the cube represents 

enantiomers of S configuration, with one R enantiomer 

(not correctly predicted). The other cloud of points 

represents enantiomens of R configuration, with five S 

enantiomers (not correctly predicted). 

Fignre : Evolution of Ecalc. with w). w)t is approximatively equal to 15 MR units for both radicals. 

Figure allows the following conch.&ons. 

M&RI) I MqRl)t and MR(Rz) ;L M&Rz~)~ => S main&. M~RI) 1 MX+l)t and MR(Rz) I MR(m)t => R 

mainly. MR(Rt)t - MR(m)t (threshold) corresponds, approximatively, to the molar refraction of groups e.g. 

equivalent to CQCH$H3. For the other cases a mixture of R+S with low enantiomerlc excess is obtained. 



The model pmsented is efficient and shows that enantioseIectivity may be quantified if data is unambigous. A 

more imporant set of carbonyl compounds is under study in order to elaborate general rules including some 

other pammeters. 
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